

Effluent Irrigation Quick Calibration

Worksheet for Travelling Effluent Irrigators (>15% overlap) Download from: www.pagebloomer.co.nz/resources

Measurement Procedure

What equipment will you need?

This worksheet and the guide

- 24 Collectors of the same diameter (at least 150 mm) 9 Litre plastic buckets are good
- 1 Measuring cylinder (about 2 Litre)
- 1 20 m tape
- 2 Electric fence standards
- 1 Stop watch
- 1 Pen or pencil

Application test

- 1 Set your 24 buckets in a row across the direction of irrigator travel [**T1** in Diagram 1]
- 2 Start the irrigator away from (before any water can reach) the line of buckets
- 3 Run the irrigator until it is well past wetting the buckets. Measure the irrigator speed as it passes over the test buckets
- 4 Measure the volume of water caught in each bucket and record on the Record Sheet

Test Details	
Farm Name	
Tester's Name	
Test Date	
Test Machine	
Test Field/Run	
Target Irrig Depth [mm]	
Test distance [m]	
Test time [min]	
Speed [m/min]	
Test Flow [L/min]	
Test Pressure at pump [kPa]	
Test Pressure at irrigator [kPa]	
Wind conditions	
Nutrient test N [kg/m ³ or mg/L]	
Nutrient test K [kg/m ³ or mg/L]	

Dealing with overlap

- 1. Place a marker half way between adjacent runs.
- 2. Mark the extent of obvious wetting when the irrigator runs. This is the "Irrigator wetting width".
- 3. If the wetting width is greater than the run spacing width, you need to account for overlap.
- 4. Place two buckets between the edge of the lane and the edge of the wetting width.
- 5. Mirror this inside the edge of the lane, with two buckets at the same spacings from the edge of the lane
- 6. Arrange eight more buckets evenly to cover the area back to the centre line (the hose or cable).
- 7. Repeat 4, 5 & 6 on the right hand side.

Speed test

- 1 Set two markers (e.g. fence standards) 5.0m apart along the hose or cable
- 2 The markers should cross the line of collectors
- 3 Measure the time for the irrigator to travel between markers.

Fie	eld Details											
а	Hydrant/lane spacing (Diag. 1) [m]											
b	Run length (Diag. 1) [m]											
с	Area Irrigated (a x b / 10,000) [ha]											
d	Number of runs											
е	Total Area (c x d) [ha]											
f	Irrigator wetting width (Diag. 1) [m]											
g	Wetting pattern width (Diag. 1) [m]											
h	Wetting area ($\mathbf{f} \times \mathbf{g}$) [m ²]											
i	Bucket diameter (measure) [mm]											
j	Open area (i / 2000) ² x 3.14 [m ²]											
k	Applied Depth (from next page) [mm]											
m	High Quartile Depth (k x DU _{hq}) [mm]											
n	Speed (from Test Details) [m/min]											
р	Flow Rate (a x k x m) [L/min]											
q	Application Rate (p / h x 60) [mm/hr]											

© Page Bloomer Associates

L12	L11	L10		\sim		\sim		C L4	D L3	\mathbf{U}		R1	C R2	R3		\sim \cdot	\sim	RT RI		R9	R10	R11	R12	-				
L12	L11	L10	67	L8	L7	L6	۲2	L4	L3	٢2	7	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	Colle	0	Complete the overlap adjustments in Column 2. Complete the calculations in Column 3.		
4	3	2	1																	4	ω	2		Collected Volumes	Column 1	Complete the overlap adjustments in Column 2. Complete the calculations in Column 3.		
AVG of 20	SUM of 20	L10	61	6	L7	L6	5	L4	L3	12	2	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	and enter Repeat fo	Add Boxes R11 and L10 from Collected Volumes and enter in L10 Below. Repeat for R10 and L11		ç	Co	ap adjustments alculations in C	
			2																			4	ω	r in L10 Below. or R10 and L11	Add Boxes R11 and L10 from Collected Volumes	Overlapped Volumes	Column 2	Column 3.
														•														
N K kg/ha	N K conc	Depth mm	mm >	Calculat mm	Depth mm	Area m ²	AVG of 20	Avera Bucke	Calcu app	DUhq	AVG of 20	AVG of 5	by avera	Calcula	AVG of 5	SUM of 5	5	4	ω	2	-	volumes	Enter th	Ca	Q			
			OR mm x kg/m ³ x 10	Calculate N&K Loading mm x g/L÷ 100				Average volume ÷ Bucket Area ÷ 1000	Calculate average applied depth: Average volume ÷				by average of all twenty	Calculate DU _{hq} : Divide average of highest five								volumes in boxes 1 – 5	Enter the highest five	Calculations	Column 3			

Recording Sheet for Travelling Effluent Irrigator Calibration (>15% OVERLAP)

© Page Bloomer Associates