

Irrigation Performance Quick Test

Worksheet for Centre Pivot Irrigators

Download from: www.pagebloomer.co.nz/resources

Measurement Procedure

What equipment will you need?

This guide and field recording sheets

- 24 Collectors of the same diameter (at least 150 mm) 9 Litre plastic buckets are good
- 1 Measuring cylinder (about 2 Litres)
- 1 5 m tape
- 2 Electric fence standards
- 1 Stop watch
- 1 Pen or pencil

Speed test

- 1 Set two markers (electric fence standards) 5.0m apart beside the end wheel track
- 2 The markers should be in line with the collectors
- 3 Measure the time for the irrigator to travel between markers

Test Details				
Farm Name				
Tester's Name				
Test Date				
Test Machine				
Test Position				
Test Pressure [kPa]	At pump			
	At Irrigator Entry			
	At Irrigator End			
Wind conditions				

Speed Test (at end wheels)		
а	Test Distance	
b	Test time [min]	
с	Speed(a / b)[m/min]	

Application test

- 1 Set your 24 buckets in a row starting a fifth of the way along the length of the irrigator
- 2 Arrange twelve buckets at even spacing from this point to two thirds of the irrigator length
- 3 Arrange ten more buckets at even spacing from two thirds of the irrigator length to the end wheels. The spacing will be different to the first twelve buckets
- 4 Arrange two buckets at even spacing between the end wheel track and the extent of significant wetting.
- 5 Start the irrigator away from (before any water can reach) the line of buckets
- 6 Run the irrigator keeping it going until it is well past wetting the buckets. Measure the irrigator speed as it passes over the test buckets
- 7 Measure the volume of water caught in each bucket and record on the Record Sheet

Machine Details				
а	Machine length [m]			
b	End gun extra length [m]			
с	Area (a + b) ² x 3.14 /10,000) [ha]			
d	Number of circles (can be parts)			
е	Total Area (c x d) [ha]			
Collector Bucket Details				
а	Bucket diameter [mm]			
b	Open area (i / 2000) ² x 3.14 [m ²]			

Application Rate		
а	Depth under end spans [mm]	
b	Wetting width at end wheels [m]	
с	Speed at end wheels [m/min]	
d	Application rate at end [mm/hr] (a / b x c x 60)	

Irrigation Performance Worksheet – Centre Pivots

1

~20% length

Column 1 Column 2 Calculations **Collected Volumes** Calculate Low Quar 1 () Average: Enter th lowest six volumes ſſ 2 boxes below 3 Low 1 4 Low 2 5 Low 3 6 Low 4 7 Low 5 Low 6 8 SUM 9 of 6 AVG 10 of 6 11 Calculate Overal Average (all twentyfe () 12 SUM 13 All 24 AVG ()14 All 24 ~66% length 15 Calculate DU: Divid average of lowest si average of all 24 16 AVG 17 of 6 AVG 18 of 24 19 DU Calculate average 20 applied depth: Average volume 21 Bucket Area ÷ 100 AVG 22 of 24 Area 23 m² Depth 24 mm

	Column 3		
rter	Calculate average depth under Sections Average volume ÷ Bucket Area ÷ 1000		
in	Calc machine	ulate %'s of average depth	
	Calculate averages under End Gun		
	SUM of 1&2		
	AVG of 1&2		
	Depth mm		
	% of AVG		
	Calculate averages under end spans		
	SUM 3 - 12		
l our)	AVG 3 - 12		
	Depth mm		
	% of AVG		
de x by	Calculate averages under inner spans		
	SUM 13-24		
	AVG 13-24		
	Depth mm		
	% of AVG		
е	Calculate Excess Water		
÷ 00	((Depth ÷ DU) –Depth) ÷ Depth x 100		
	Overall Depth		
	DU		
	EWF		

Worksheet for Centre Pivot Irrigator Performance Quick Test

Enter your field measurements from buckets in Column 1. Complete the calculations in Columns 2 and 3.