

Irrigation Performance Quick Test

Worksheet for Linear Move Irrigators

Download from: www.pagebloomer.co.nz/resources

Measurement Procedure

What equipment will you need?

This worksheet and the guide sheets

- 24 Collectors of the same diameter (>150 mm)
- 1 Measuring cylinder (about 2 Litre)
- 1 5 m tape
- 2 Electric fence standards
- 1 Stop watch
- 1 Pen or pencil

Speed test

- 1 Set two markers (electric fence standards) 5.0m apart beside the centre wheel track
- 2 The markers should be in line with the collectors
- 3 Measure the time for the irrigator to travel between markers – they move when the carriage hits them

Application test

- 1 Set 24 collectors (buckets) in a row along the length of the irrigator
- 2 Arrange eight buckets at even spacing under the first span or two of the machine.
- Arrange eight more buckets at even spacing in the middle of the machine.
- 4 Arrange eight more buckets under the last span or two of the machine.
- 5 If there is an end gun, arrange two of these buckets at even spacing between the end wheel track and the extent of significant wetting
- 6 Start the irrigator away from (before any water can reach) the line of buckets
- 7 Run the irrigator keeping it going until it is well past wetting the buckets. Measure the irrigator speed as it passes over the test buckets
- 8 Measure the volume of water caught in each bucket and record on the next page

Test Details		
Farm Name		
Tester's Name		
Test Date		
Test Machine		
Test Position		
Test Pressure [kPa]	At pump	
	At Irrigator Entry	
	At Irrigator End	
Wind conditions		

Speed Test (at end wheels)			
Test Distance			
Test time [min]			
Speed [m/min]			

Ма	Machine Details	
а	Machine length [m]	
b	End gun extra length [m]	
С	Travel distance one rotation [m]	
d	Area (a + b) x c /10,000) [ha]	
е	Number of runs	
f	Total Area (d x e) [ha]	
g	Wetting width [m]	
h	Wetting length [m]	
I	Wetted area (f x g) [m ²]	

Collector Bucket Details		
i	Bucket diameter [mm]	
j	Open area (i / 2000) ² x 3.14 [m ²]	

Download from: www.pagebloomer.co.nz/resources

Irrigation Performance Worksheet - Linear Move Irrigators

Worksheet for Linear Move Irrigator Performance Quick Test

Enter your field measurements from buckets in Column 1. Complete the calculations in Columns 2 and 3.

	С	olumn 1
4	Collec	cted Volumes
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	
	16	
	17	
	18	
	19	
	20	
	21	
	22	
	23	
	24	

C	Solumn 2
Calculations	
Calculate Low Quarter Average: Enter the lowest six volumes in boxes below	
Low 1	
Low 2	
Low 3	
Low 4	
Low 5	
Low 6	
SUM of 6	
AVG of 6	
Calculate Overall Average (all twentyfour)	
SUM All 24	
AVG All 24	
Calculate DU: Divide average of lowest six by average of all 24	
AVG of 6	
AVG of 24	
DU	
Calculate average applied depth: Average volume ÷ Bucket Area ÷ 1000	
AVG of 24	
Area m ²	
Depth	

mm

С	Column 3	
depth u	Calculate average depth under Sections Average volume ÷ Bucket Area ÷ 1000	
	culate %'s of average depth	
Calcu	late averages r End Spans	
SUM 1 – 8	. בוום ססמווס	
AVG 1-8		
Depth mm		
% of AVG		
	Calculate averages under middled spans	
SUM 9 - 16		
AVG 9 - 16		
Depth mm		
% of AVG		
	Calculate averages under first spans	
SUM 17-24		
AVG 17-24		
Depth mm		
% of AVG		
Calculate Excess Water Factor EWF% ((Depth ÷ DU) –Depth) ÷ Depth x 100		
Overall Depth		
DU		
EWF		